Skip to main content

What Psychedelic Research Can and Cannot Tell Us about Consciousness

A recent Scientific American blog post misconstrues and oversimplifies the research

This article was published in Scientific American’s former blog network and reflects the views of the author, not necessarily those of Scientific American


It’s not easy to strike the right balance when taking new scientific findings to a wider audience. In a recent opinion piece, Bernard Kastrup and Edward F. Kelly point out that media reporting can fuel misleading interpretations through oversimplification, sometimes abetted by the scientists themselves. Media misinterpretations can be particularly contagious for research areas likely to pique public interest—such as the exciting new investigations of the brain basis of altered conscious experience induced by psychedelic drugs.

Unfortunately, Kastrup and Kelly fall foul of their own critique by misconstruing and oversimplifying the details of the studies they discuss. This leads them towards an anti-materialistic view of consciousness that has nothing to do with the details of the experimental studies—ours or others.

Take, for example, their discussion of our recent study reporting increased neuronal “signal diversity” in the psychedelic state. In this study, we used “Lempel-Ziv” complexity—a standard algorithm used to compress data files—to measure the diversity of brain signals recorded using magnetoencephalography (MEG). Diversity in this sense is related to, though not entirely equivalent to, “randomness.” The data showed widespread increased neuronal signal diversity for three different psychedelics (LSD, psilocybin and ketamine), when compared to a placebo baseline. This was a striking result since previous studies using this measure had only reported reductions in signal diversity, in global states generally thought to mark “decreases” in consciousness, such as (non-REM) sleep and anesthesia.


On supporting science journalism

If you're enjoying this article, consider supporting our award-winning journalism by subscribing. By purchasing a subscription you are helping to ensure the future of impactful stories about the discoveries and ideas shaping our world today.


Media reporting of this finding led to headlines such as “First evidence found that LSD produces ‘higher’ levels of consciousness” (The Independent, April 19, 2017)—playing on an ambiguity between cultural and scientific interpretations of “higher”—and generating just the kind of confusion that Kastrup and Kelly rightly identify as unhelpful.

Unfortunately, Kastrup and Kelly then depart from the details in misleading ways. They suggest that the changes in signal diversity we found are “small,” when it is not magnitude but statistical significance and effect size that matters. Moreover, even small changes to brain dynamics can have large effects on consciousness. And when they compare the changes reported in psychedelic states with those found in sleep and anesthesia, they neglect the important fact that these analyses were conducted on different data types (intracranial data and scalp-level EEG respectively—compared to source-localized MEG for the psychedelic data)—making quantitative comparisons very difficult.

Having set up the notion that the changes we observed were “small,” they then say, “To suggest that brain activity randomness explains psychedelic experiences seems inconsistent with the fact that these experiences can be highly structured and meaningful.” However, neither we nor others claim that “brain activity randomness” explains psychedelic experiences. Our finding of increased signal diversity is part of a larger mission to account for aspects of conscious experience in terms of physiological processes. In our view, higher signal diversity indicates a larger repertoire of physical brain states that very plausibly underpin specific aspects of psychedelic experience, such as a blending of the senses, dissolution of the “ego,” and hyper-animated imagination. As standard functional networks dissolve and reorganize, so too might our perceptual structuring of the world and self.

“In short, a formidable chasm still yawns between the extraordinary richness of psychedelic experiences and the modest alterations in brain activity patterns so far observed.” Here, their misrepresentations are again exposed. To call the alterations modest is to misread the statistics. To claim a “formidable chasm” is to misunderstand the incremental nature of consciousness research (and experimental research generally), to sideline the constraints and subtleties of the relevant analyses and to ignore the insights into psychedelic experience that such analyses provide.

Kastrup and Kelly’s final move is to take this presumed chasm as motivation for questioning “materialist” views, held by most neuroscientists, according to which conscious experiences —and mental states in general—are underpinned by brain states. Our study, like all other studies that explore relations between experiential states and brain states (whether about psychedelics or not), is entirely irrelevant to this metaphysical question.

These are not the only inaccuracies in the piece that deserve redress. For example, their suggestion that decreased “brain activity” is one of the more reliable findings of psychedelic research is incorrect. Aside from the well-known stimulatory effects of psychedelics on the excitatory glutamate system, early reports of decreased brain blood flow under psilocybin have not been well replicated: a subsequent study by the same team using a different protocol and drug kinetics (intravenous LSD) found only modest increases in brain blood flow confined to the visual cortex. In contrast, more informative dynamic measures have revealed more consistent findings, with network disintegration, increases in global connectivity and increased signal diversity/entropy appearing to be particularly reliable outcomes, replicated across studies and study teams.

Consciousness science remains a fragile business, poised precariously between grand ambition, conflicting philosophical worldviews, immediate personal relevance and the messy reality of empirical research. Psychedelic research in particular has its own awkward cultural and historical baggage. Against this background, it’s important to take empirical advances for what they are: yardsticks of iterative, self-correcting progress.

This research is providing a unique window onto mappings between mechanism and phenomenology, but we are just beginning to scratch the surface. At the same time—and perhaps more importantly—psychedelic research is demonstrating an exciting potential for clinical use, for example in alleviating depression, though larger and more rigorous studies are needed to confirm and contextualize the promising early findings.    

Kastrup and Kelly are right to guard against overplaying empirical findings by the media. But by misrepresenting the explanatory reach of our findings in order to motivate metaphysical discussions irrelevant to our study, they risk undermining the hard-won legitimacy of a neuroscience of consciousness. Empirical consciousness science, based firmly on materialistic assumptions, is doing just fine. And unlike alternative perspectives that place themselves “beyond physicalism,” it will continue to shed light on one of our deepest mysteries through rigorous application of the scientific method.

Anil Seth is Professor of Cognitive and Computational Neuroscience at the University of Sussex, where he co-directs the Sackler Centre for Consciousness Science. He is also a Senior Fellow of the Canadian Institute for Advanced Research and a Wellcome Trust Engagement Fellow.

More by Anil Seth

Michael Schartner is a postdoc in Alex Pouget's lab of computational cognitive neuroscience, part of the International Brain Laboratory and former PhD student of Adam Barrett and Anil Seth.

More by Michael Schartner

Enzo Tagliazucchi is an associate researcher and group leader at the National Scientific and Technical Research Council (Buenos Aires, Argentina). He is also a researcher at the Brain and Spine Institute in Paris, France, funded by a Marie Curie Individual Fellowship.

More by Enzo Tagliazucchi

Suresh Muthukumaraswamy is Senior Lecturer in the School of Pharmacy at the University of Auckland. He holds a Rutherford Discovery Fellowship.

More by Suresh Muthukumaraswamy

Robin Carhart-Harris has overseen a series of brain imaging studies into the brain effects of LSD, psilocybin, MDMA and DMT, plus a clinical trial of psilocybin for treatment-resistant depression. He currently heads of Psychedelic Research Group at Imperial and as of November 1, 2018 will be Associate Professor at the University of Oxford, leading a new Centre for Psychedelic Research there.

More by Robin Carhart-Harris

Adam Barrett is a mathematician at the Sackler Centre for Consciousness.

More by Adam Barrett