ADVERTISEMENT
  About the SA Blog Network













Plugged In

Plugged In


More than wires - exploring the connections between energy, environment, and our lives
Plugged In HomeAboutContact

Used Tires Could Find Second Life in Batteries

The views expressed are those of the author and are not necessarily those of Scientific American.


Email   PrintPrint



Hundreds of millions of tires reach the end of their first life each year in the United States. The majority of these tires are recycled into road paving materials, plastic additives, and other useful materials. But, a significant waste stream remains, providing an opportunity for new applications for wasted rubber.

This month, the chemistry journal RSC Advances published a paper outlining a process for converting used rubber tires into anodes for lithium-ion batteries. Authored by researchers at Oak Ridge National Laboratory (ORNL), this paper discusses the process for converting waste tire rubber into nanoporous carbon cakes. According to the authors, these cakes have been used successfully in small laboratory-scale batteries for a hundred charge-discharge cycles.

This method for producing the anode material from used rubber could provide another method for recycling the hundreds of millions of used tires that are produced across the United States each year. However, it will have to prove its competitiveness against other materials in order to achieve commercial success.

Today, the graphite is the anode material-of-choice for lithium ion batteries. However, according to their initial testing results, the ORNL battery has a higher reversible capacity than commercial graphite materials. According to a press release, these properties are due to the unique microstructure of the ORNL tire-derived carbon. In the words of lead researcher, Parans Paranthaman:

This kind of performance is highly encouraging, especially in light of the fact that the global battery market for vehicles and military applications is approaching $78 billion and the materials market is expected to hit $11 billion in 2018.

Furthermore, the carbon material produced in this process could be used in water filtration, gas sorption and storage applications.

Moving forward, ORNL is looking to commercially license this technology (see #ORNL-TT-2014-08), moving it from bench to store shelves for “automobile, stationary storage, medical and military applications.”

Photo Credit: Graphic courtesy of Oak Ridge National Laboratory

Melissa C. Lott About the Author: An engineer and researcher who works at the intersection of energy, environment, technology, and policy. Follow on Twitter @mclott.

The views expressed are those of the author and are not necessarily those of Scientific American.





Rights & Permissions

Comments 2 Comments

Add Comment
  1. 1. BankerGirl 8:49 pm 08/31/2014

    Well, if it can be made price competitive, why not?

    Link to this
  2. 2. ihydrocarbon 10:40 am 09/1/2014

    A low cost, detailed proof of concept is on youtube:

    https://www.youtube.com/watch?v=ZCZgb0qJ0E0

    Link to this

Add a Comment
You must sign in or register as a ScientificAmerican.com member to submit a comment.

More from Scientific American

Scientific American Holiday Sale

Black Friday/Cyber Monday Blow-Out Sale

Enter code:
HOLIDAY 2014
at checkout

Get 20% off now! >

X

Email this Article

X