Skip to main content

Molecular Analysis Supports Controversial Claim for Dinosaur Cells

This article was published in Scientific American’s former blog network and reflects the views of the author, not necessarily those of Scientific American


RALEIGH—Twenty years ago, paleontologist Mary Schweitzer made an astonishing discovery. Peering through a microscope at a slice of dinosaur bone, she spotted what looked for all the world like red blood cells. It seemed utterly impossible—organic remains were not supposed to survive the fossilization process—but test after test indicated that the spherical structures were indeed red blood cells from a 67-million-year-old Tyrannosaurus rex. In the years that followed, she and her colleagues discovered other apparent soft tissues, including what seem to be blood vessels and feather fibers. But controversy accompanied their claims. Skeptics argued that the alleged organic tissues were instead biofilm—slime formed by microbes that invaded the fossilized bone.

Schweitzer and her colleagues have continued to amass support for their interpretation. The latest evidence comes from a molecular analysis of what look to be bone cells, or osteocytes, from T. rex and Brachylophosaurus canadensis. The researchers isolated the possible osteocytes and subjected them to several tests. When they exposed the cell-like structures to an antibody that targets a protein called PHEX found only in bird osteocytes* (birds are descended from dinosaurs), the structures reacted, as would be expected of dinosaur osteocytes. And when the team subjected the supposed dinosaur cells to other antibodies that target DNA, the antibodies bound to material in small, specific regions inside the apparent cell membrane.

Furthermore, using a technique called mass spectrometry, the investigators found amino acid sequences of proteins in extracts of the dinosaur bone that matched sequences from proteins called actin, tubulin and histone4 that are present in the cells of all animals. Although some microbes have proteins that are similar to actin and tubulin, the researchers note that soil-derived E. coli as well as sediments that surrounded the two dinosaur specimens failed to bind to the actin and tubulin antibodies that bound to the extract containing the apparent osteocytes.


On supporting science journalism

If you're enjoying this article, consider supporting our award-winning journalism by subscribing. By purchasing a subscription you are helping to ensure the future of impactful stories about the discoveries and ideas shaping our world today.


Schweitzer and her collaborators detailed their findings in a paper released online October 16 in the journal Bone and in a talk given October 17 in Raleigh at the annual meeting of the Society of Vertebrate Paleontology. “Here’s the data in support of a biofilm origin,” Schweitzer said in her presentation as she showed a blank slide. “We haven’t found any yet.”

 

*Update, Oct. 20, 2012, 11:24 a.m.: Mary Schweitzer emailed me to clarify a point that did not come across in her talk. "PHEX is actually found in many taxa. However proteins have thousands of antibody binding sites on them. Some antibodies that bind to epitopes shared among groups are broadly cross reactive. Ours, OB 7.3 was selected for only one epitope out of thousands, and that epitope is, so far as it has been tested by the primary researchers, only reactive to osteoctyes from birds. It has been tested against bird osteoblasts, cells on the same lineage as osteocytes, and does not react, and it does not react with osteocytes from non avian taxa tested. So it is the selective specificity of the antibody for bird osteocytes that is important. We are not saying birds and dinos are the only ones that have the protein, but because the sequence is inherited, it has different 'shapes' in each group and the 'shape' this antibody binds seems to be unique to bird osteocytes in living taxa."

Kate Wong is an award-winning science writer and senior editor at Scientific American focused on evolution, ecology, anthropology, archaeology, paleontology and animal behavior. She is fascinated by human origins, which she has covered for more than 25 years. Recently she has become obsessed with birds. Her reporting has taken her to caves in France and Croatia that Neandertals once called home, to the shores of Kenya's Lake Turkana in search of the oldest stone tools in the world, to Madagascar on an expedition to unearth ancient mammals and dinosaurs, to the icy waters of Antarctica, where humpback whales feast on krill, and on a "Big Day" race around the state of Connecticut to find as many bird species as possible in 24 hours. Kate is co-author, with Donald Johanson, of Lucy's Legacy: The Quest for Human Origins. She holds a bachelor of science degree in biological anthropology and zoology from the University of Michigan. Follow Wong on X (formerly Twitter) @katewong

More by Kate Wong