ADVERTISEMENT
Doing Good Science

Doing Good Science

Building knowledge, training new scientists, sharing a world.

Resistance to ethics instruction: considering the hypothesis that moral character is fixed.

|

This week I've been blogging about the resistance to required ethics coursework one sometimes sees in STEM* disciplines. As one reason for this resistance is the hunch that you can't teach a person to be ethical once they're past a certain (pre-college) age, my previous post noted that there's a sizable body of research that supports ethics instruction as an intervention to help people behave more ethically.

But, as I mentioned in that post, the intuition that one's moral character is fixed by one's twenties can be so strong that folks don't always believe what the empirical research says about the question.

So, as a thought experiment, let's entertain the hypothesis that, by your twenties, your moral character is fixed -- that you're either ethical or evil by then and there's nothing further ethics instruction can do about it. If this were the case, how would we expect scientists to respond to other scientists or scientific trainees who behave unethically?

Presumably, scientists would want the unethical members of the tribe of science identified and removed, permanently. Under the fixed-character hypothesis, the removal would have to be permanent, because there would be every reason to expect the person who behaved unethically to behave unethically again.

If we took this seriously, that would mean every college student who ever cheated on a quiz or made up data for a lab report should be barred from entry to the scientific community, and that every grown-up scientist caught committing scientific misconduct -- or any ethical lapse, even those falling well short of fabrication, falsification, or plagiarism -- would be excommunicated from the tribe of science forever.

That just doesn't happen. Even Office of Research Integrity findings of scientific misconduct don't typically lead to lifetime disbarment from federal research funding. Instead, they usually lead to administrative actions imposed for a finite duration, on the order of years, not decades.

And, I don't think the failure to impose a policy of "one strike, you're out" for those who behave unethically is because members of the tribe of science are being held back by some naïvely optimistic outside force (like the government, or the taxpaying public, or ethics professors). Nor is it because scientists believe it's OK to lie, cheat, and steal in one's scientific practice; there is general agreement that scientific misconduct damages the shared body of knowledge scientists are working to build.

When dealing with members of their community who have behaved unethically, scientists usually behave as if there is a meaningful difference between a first offense and a pattern of repeated offenses. This wouldn't make sense if scientists were truly committed to the fixed-character hypothesis.

On the other hand, it fits pretty well with the hypothesis that people may be able to learn from their mistakes -- to be rehabilitated rather than simply removed from the community.

There are surely some hard cases that the tribe of science view as utterly irredeemable, but graduate students or early career scientists whose unethical behavior is caught early are treated by many as probably redeemable.

How to successfully rehabilitate a scientist who has behaved unethically is a tricky question, and not one scientists seem inclined to speak about much. Actions by universities, funding agencies, or governmental entities like the Office of Research Integrity are part of the punishment landscape, but punishment is not the same thing as rehabilitation. Meanwhile, it's unclear whether individual actions to address wrongdoing are effective at heading off future unethical behavior.

If it takes a village to raise a scientist, it may take concerted efforts at the level of scientific communities to rehabilitate scientists who have strayed from the path of ethical practice. We'll discuss some of the challenges with that in the next post.

______

*STEM stands for science, technology, engineering, and mathematics.

The views expressed are those of the author and are not necessarily those of Scientific American.

Share this Article:

Comments

You must sign in or register as a ScientificAmerican.com member to submit a comment.

Email this Article

X