About the SA Blog Network



Current thoughts on mind, life and culture
Brainwaves Home

The Food Fight in Your Gut: Why Bacteria Will Change the Way You Think about Calories

The views expressed are those of the author and are not necessarily those of Scientific American.

Email   PrintPrint

Campylobacter bacteria (Image by Agricultural Research Service, via Wikimedia Commons)

There’s a food fight in your guts. Not the Tater-Tot-chucking, spoonful-of-mashed potato-flinging, melee-in-the-cafeteria type of food fight. Rather, your intestines are the site of an ancient and complex war between your own cells and trillions of bacteria—a war over what happens to your food as it moves through your body. Some of the bacteria form genuine alliances with your intestinal cells, breaking down tough plant fibers that your cells cannot handle on their own, or chopping up lengthy caterpillar molecules into more digestible packages, in exchange for a portion of the day’s calories. Other bacteria lurk and loiter, sipping the nutrient-rich broth sloshing in your intestines as they wait for their chance to overrun your guts at the expense of your health. Every day, these microorganisms squabble amongst themselves for greater access to available nutrients. And sometimes your cells fight back, working extra hard to digest the food you eat before those persistent microbes help themselves to a disproportionately large serving. Studies suggest that the diversity of bacterial species in our guts partially determines how efficiently our cells process and store food and that, in a feedback loop, what we eat alters the demographics of the bacteria in our intestines. Commonly prescribed antibiotics are responsible for unintended microbial casualties, further changing how our resident population of microorganisms responds to our diet. Although scientists are still figuring out the rules of this intricate food fight, it’s evident by now that our guts are not entirely our own—they are composite organs, part-human, part-microbe, which evolved, and continue to function, as communities whose many minute members are sometimes cooperative, sometimes combative and always hungry.

A study published this week adds nuance to scientists’ evolving understanding of how gut bacteria change the way animals digest food. Ivana Semova and John Rawls of the University of North Carolina at Chapel Hill, along with their colleagues, studied the absorption of fluorescent fatty acids in the intestines of tiny translucent zebrafish (Danio rerio). Compared to zebrafish raised in germ-free environments, zebrafish whose guts were colonized by bacteria absorbed more fat from their diets. And the more the fish ate, the larger the population of bacteria in their guts. In particular, eating encouraged the growth of a tribe of bacteria known as Firmicutes, which in turn increased the number of energy-rich fat bubbles stored within the fish’s intestinal cells for later use. Studies with people and mice have also shown that high-calorie diets stimulate the growth of Firmicutes in the gut, hinting that this particular group of bacteria may respond to its host’s diet in similar ways across many different species. What remains unclear is whether Firmicutes helps animals absorb more calories from their food in a mutually beneficial partnership or if the relationship is more complex—and sometimes less than benevolent.

Bacteria constitute between 40 and 60 percent of the dry weight of human feces, with trillions of cells in every gram. Zebrafish intestines are not home to the exact same species of bacteria that live in our own guts, but—if you take a broad enough view of the communities—they have a surprising amount of overlap. Both communities are dominated by the phyla Proteobacteria, Firmicutes, and Bacteroidetes (phylum is the taxonomic level below kingdom). Young zebrafish are also particularly convenient for scientists who want an inside look on the digestive process because day-old zebrafish are transparent—you you can see everything that is happening in their intestines under a microscope without the need for a damaging and disruptive dissection.

Semova and Rawls chemically bonded fluorescent molecules to two common fatty acids, palmitic acid pentanoic acid, and mixed the glowing fats into the egg yolk of embryonic zebrafish. The intestinal cells of zebrafish that were exposed to bacteria as they developed glowed more brightly than the intestinal cells of zebrafish that were raised in sterile environments, indicating that zebrafish guts squirming with bacteria absorbed more fat. The intestinal cells of zebrafish with healthy populations of gut bacteria, collectively known as gut microbiota, also contained larger lipid droplets—bubbles of fat stored as expedient sources of energy.

In the presence of bacteria, zebrafish intestinal cells (red) absorb more fatty acids and package larger lipid droplets (green). Well-fed zebrafish with healthy bacterial populations package the most lipid droplets of all. Image created by Ivana Semova, UNC

The number of lipid droplets in the fish’s intestinal cells depended on their diet. Fish with bacteria in their guts and a steady source of food had much higher numbers of lipid droplets in their intestinal cells than fish that were denied food for a few days. Eating specifically promoted the growth of bacterial species in the phylum Firmicutes and this increase was not reflected by changes in the numbers of bacteria in the surrounding water. Eating changes a fish’s internal ecosystem. The more a zebrafish eats, the more Firmicutes in its guts. And the more Firmicutes in a zebrafish’s guts, the more efficiently its intestinal cells absorb fat.

To investigate how Firmicutes stimulates fat absorption, Semova and Rawls grew different strains of bacteria in different liquid media, which you can think of as a kind of broth. After filtering out the bacteria, they exposed baby zebrafish to the different media. Only media from Firmicutes significantly increased the number of lipid droplets in the fish’s intestinal cells, suggesting that whatever proteins or molecules those bacteria secreted into the media somehow enhanced fatty acid absorption. The results were published September 13 in Gut Host & Microbe.

These findings mirror the conclusions of many previous studies, which have shown, for example, that starving mice for a single day reduces the population of Firmicutes in their guts and that transplanting Firmicutes from obese mice into the germ-free intestines of lean mice makes the thin rodents plump. When obese people begin a low-fat or low-carb diet, Bacteroidetes proliferates and Firmicutes dwindles. Clearly, Firmicutes is happiest when we are eating a lot. One pertinent and unanswered question is whether we should share that happiness. Are Firmicutes graciously helping us extract more calories from our food, taking only a modest cut for themselves? Are they selfishly increasing their own numbers when the eating is good, forcing our cells to sweat to get the most out of our food? Are they in fact making digestion too easy, liberating so many calories from our food that we absorb far more than we need? Perhaps there is truth in all these scenarios.

“We are in the midst of a revolution of our ability to describe the composition and physiological potential of these bacterial communities,” Rawls says. “What we can begin to speculate on, though, are the different types of relationships that might be taking place. We know gut microbiota enhance our ability to extract calories from complex carbohydrates, which is clearly a mutually beneficial relationship. But it’s thought that all vertebrates have the capacity to digest and absorb other types of nutrients, such as lipids, proteins and simple carbohydrates, so it’s not readily clear how we could enter into a mutually beneficial relationship with bacteria with regard to those nutrients. When we see fatty acid absorption increased in zebrafish, that may be selfish or defensive response. Perhaps the fish recognizes the presence of more bacteria and increases its own fatty acid absorption. It may not always be such a friendly arrangement.”

About the Author: Ferris Jabr is an associate editor focusing on neuroscience and psychology. Follow on Twitter @ferrisjabr.

The views expressed are those of the author and are not necessarily those of Scientific American.

Rights & Permissions

Comments 7 Comments

Add Comment
  1. 1. ChazInMT 1:06 am 09/13/2012

    Amazing stuff, makes you think twice before taking any antibiotics. I’m gonna go eat a yogurt now.

    Link to this
  2. 2. VivaLaEvolucion 7:46 pm 09/13/2012

    I would like to see some human studies on this issue. I am curious as to which foods promote growth of which bacteria. Also am curious about difference in type and amount of bacteria in exclusive vegetarians/vegans vs omnivores. And, it mentioned that the dry weight of human feces is 40-60 percent bacteria. I am curious as to what the dry weight bacteria level is in people taking different types of antibiotics, and which species survive in the gut during a rounds of different antibiotics. Ok, time to go eat some sauerkraut :-)

    Link to this
  3. 3. kristina_jane 8:47 pm 09/15/2012

    Great characterization of the science – this article goes beyond the misleading headlines I’ve seen lately that say something like “gut bacteria makes you fat”.

    From articles I’ve read, extraction of nutrients in the intestines is indeed like any food fight: alliances seem to be complex, multiple factors seem to influence success, and even a win is messy.

    Link to this
  4. 4. Bill_Crofut 10:05 am 09/18/2012

    Re: “Although scientists are still figuring out the rules of this intricate food fight, it’s evident by now that our guts are not entirely our own—they are composite organs, part-human, part-microbe, which evolved…”

    Have scientists as yet figured out what the gut was before it “evolved” or, into what it is currently evolving?

    Link to this
  5. 5. bucketofsquid 4:14 pm 09/20/2012

    Yes Bill_Crofut, they have figured out what our gut was before; it was a simpler system of digestion. Before that it was an even simpler digestion system. Take that far enough back and it was the ability of a single cell to absorb nutrients.

    It is currently evolving into a digestive system that can handle modern consumption patterns. Evolution being an imprecise process, it involves a lot of illness and premature death. Better to understand it soon and stop consuming bad stuff.

    Link to this
  6. 6. Bill_Crofut 3:26 pm 09/22/2012


    What is the evidence?

    Link to this
  7. 7. T S Raman 8:37 am 09/26/2012

    You say intestinal microorganisms are “breaking down tough plant fibers that your cells cannot handle on their own, or chopping up lengthy caterpillar molecules into more digestible packages…etc”
    Are you talking about HUMANS? I was under the impression that intestinal bacteria in humans were commensals at best, and contributed little to making otherwise indigestible foodstuff available to the host humans. For instance, almost no breakdown of cellulose takes place in the human alimentary tract. The little that does happen is in the large intestines from which there is no significant absorption of bulk nutrients into the human body. If I am wrong, will someone please correct me and give references to literature? Thanks.

    Link to this

Add a Comment
You must sign in or register as a member to submit a comment.

More from Scientific American

Email this Article